

UF's EEL3701:
Digital Logic &
Computer
Systems by
Eric Schwartz

EEL3701: Digital Logic & Computer Systems

Menu

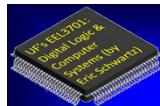
- Three classes of digital machines
- Stages of digital design
- Logic Design
- Circuit Design

University of Florida, EEL 3701 – File **02**
© Drs. Schwartz & Arroyo

1

UF's EEL3701:
Digital Logic &
Computer
Systems by
Eric Schwartz

EEL3701: Digital Logic & Computer Systems


Classes of Digital Machines

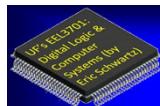
- Three Classes of Digital Machines
 - >Combinational Circuits / Logic Circuits
 - >Sequential Logic
 - Algorithmic State Machines (ASM)
 - >Microcomputers/Microprocessors
 - Von-Neumann/Atanasoff Digital Computer Model

University of Florida, EEL 3701 – File **02**
© Drs. Schwartz & Arroyo

2

•2

EEL3701: Digital Logic & Computer Systems


Combinatorial and Sequential Logic

- Combinational Logic
 - > Machines that have zero memory
 - > Boolean Algebra & K-Maps
 - > Design of “glue” parts in larger digital applications
- Sequential Logic
 - > Finite Memory circuits
 - > Feedback & the concept of the **state** of a machine

University of Florida, EEL 3701 – File 02
© Drs. Schwartz & Arroyo

3

•3

EEL3701: Digital Logic & Computer Systems

Algorithmic State Machines

- Algorithmic State Machines (ASM or FSM)
 - > A **modern** approach to sequential logic design
 - > Has a **programming flavor**, while allowing increased design complexity
- Microcomputers/Microprocessors
 - > Partially infinite memory
 - > General-purpose digital machines
 - > Architecture of a microprocessor
 - > Examples:
 - Raspberry Pi *Pico* (EEL3923)
 - STMicroelectronic *STM32L496xx* (EEL4924)
 - Microchip/Atmel *ATXMEGA128A1U* (EEL4744)
 - Historic: *68HC11/12, 8051, TMS320F28335* (TI DSC)
 - **G-CPU**

University of Florida, EEL 3701 – File 02
© Drs. Schwartz & Arroyo

4

•4

UF's EEL3701:
Digital Logic &
Computer
Systems by
Eric Schwartz

EEL3701: Digital Logic & Computer Systems

Model of Combinational Digital Machines

$X = [x_1, x_2, \dots, x_n]^T$

$Y = [y_1, y_2, \dots, y_m]^T$

$Y = F(X) = [f_1(X), f_2(X), \dots, f_m(X)]^T$

Each output y_i can be computed if the inputs x_j are known.

$y_i(t) = f_m(X(t))$ {We often omit the (t) notation.}

University of Florida, EEL 3701 – File 02
© Drs. Schwartz & Arroyo

5

UF's EEL3701:
Digital Logic &
Computer
Systems by
Eric Schwartz

EEL3701: Digital Logic & Computer Systems

Model of Sequential Digital Machines

X

Y

Q

Q^+

$Comb. Logic Network$

$Memory$

Each Q is called a **state** ≡ a summary of the past or historical behavior.

$Y = F(Q, X)$ There are m equations or m scalar functions.

$Q^+ = G(Q, X)$ There are k equations or k scalar functions.

University of Florida, EEL 3701 – File 02
© Drs. Schwartz & Arroyo

6

•6

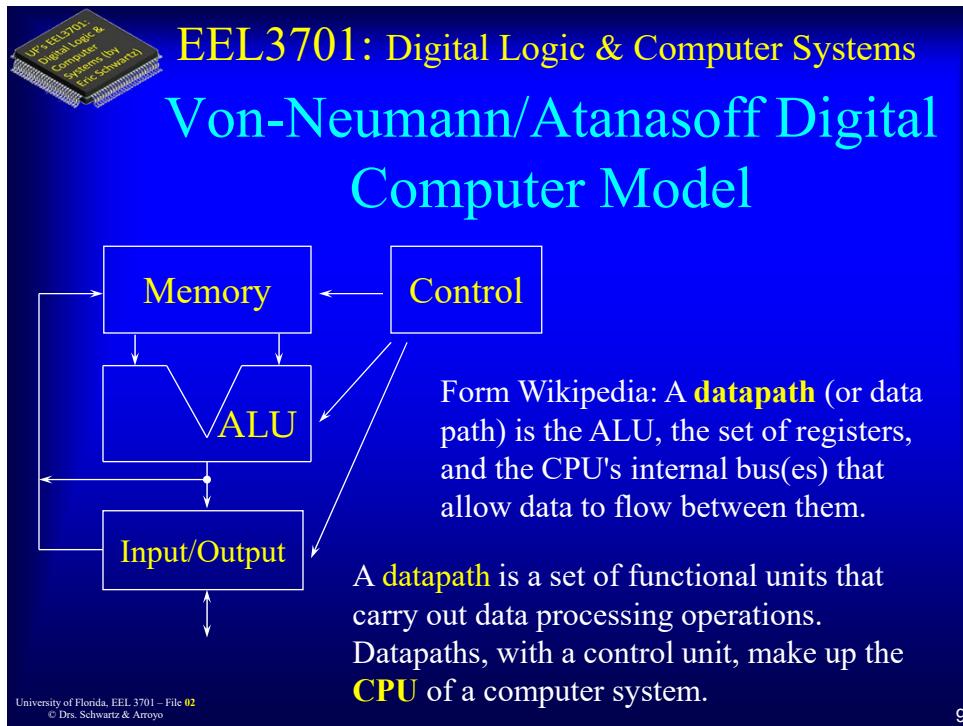
UF's EEL3701:
Digital Logic &
Computer
Systems by
Eric Schwartz

EEL3701: Digital Logic & Computer Systems Algorithmic State Machine (ASM) Design

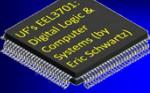
Example: Add 1 to the number I am thinking of?

University of Florida, EEL 3701 – File 02
© Drs. Schwartz & Arroyo

7


UF's EEL3701:
Digital Logic &
Computer
Systems by
Eric Schwartz

EEL3701: Digital Logic & Computer Systems Algorithmic State Machine (ASM) Design


- The “modern model” for designing state machines
 - > It is about $0x37$ (55_{10}) years old (created in mid-1970's)
- Has a programming flavor
- ASM does not introduce a new class of machines

University of Florida, EEL 3701 – File 02
© Drs. Schwartz & Arroyo

8

•10

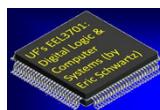
EEL3701: Digital Logic & Computer Systems Stages in the Design of Digital Systems

- Example: Designing a digital computer involves specifying the number of bits per word, size of memory, buses, etc.

University of Florida, EEL 3701 – File 02
© Drs. Schwartz & Arroyo

11

•11

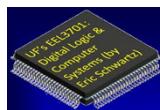

EEL3701: Digital Logic & Computer Systems Logic Design

- **Logic Design:** How to interconnect the basic logic building blocks to perform specific functions
- Example: In building an arithmetic logic unit (ALU), you need to specify the logic gates and flip-flops that will give the unit the capability to manipulate n-bit binary numbers

University of Florida, EEL 3701 – File 02
© Drs. Schwartz & Arroyo

12

•12


EEL3701: Digital Logic & Computer Systems

Circuit Design

- **Circuit Design:** How to interconnect specific components, e.g., ICs, resistors, switches, LEDs, etc.
- *The lectures of this course deal primarily with logic design.*
- *The laboratory deals with logic circuit design, circuit constructions and debugging, and implementation.*

University of Florida, EEL 3701 – File **02**
© Drs. Schwartz & Arroyo

13

EEL3701: Digital Logic & Computer Systems

The End!

University of Florida, EEL 3701 – File **02**
© Drs. Schwartz & Arroyo

14

•13